
Charlene Yang

OpenACC Updates

Committee Meeting
Feb 19-21

Application Performance Specialist
cjyang@lbl.gov



OpenACC vs. OpenMP
• Aims to build a ‘leaner’ set of directives

• targeting scalable parallelism, not general parallelism
• e.g. no tasking, less synchronization primitives

• Descriptive vs. Prescriptive
• lets compilers figure out how to move data/parallelize compute
• less directed by the programmer
• hence more performance portable

• More mature for accelerators whereas OpenMP more mature for multi-cores
• can work together though
• e.g. OpenACC inside OpenMP

• At the end of the day, the method of parallelizing is the most valuable!



OpenACC vs. OpenMP

OpenACC
• Focused on accelerated computing
• More agile
• Performance portability
• Descriptive
• Extensive interoperability
• More mature for accelerators

OpenMP
• General purpose parallelism
• More measured
• Performance portability a challenge
• Prescriptive
• Limited interoperability
• More mature for multi-core

* Michael Wolfe, Duncan Poole
https://www.nextplatform.com/2015/11/30/is-openacc-the-best-thing-to-happen-to-openmp/ 



Face-to-Face Meeting

• Feedback from previous hackathons
– OLCF GPU Hackathons
– OpenACC Hackathons

• Issues from previous discussions or GitHub OpenACC/openacc-spec/Issues

• Prioritizing/Assigning open issues

– Deep copy
– Multiple devices
– Task graphs
– Optimization directives
– C++ Lambdas
– Aliasing on data clauses, #14

– Reductions, #148, #157
– requires directive
– Cleaning up C/C++/Fortran pointers
– Error handler
– Memory Allocation
– New C/C++/Fortran language features



Deep Copy
• Nested dynamic data structures
• e.g. ICON, climate code from CSCS, Fortran, four levels of derived structured arrays

diag and metrics both have 80 allocatable/pointer array members



Deep Copy

A motivating example:

struct deep_type { 
int n; 
float* a;
float* b;
float* c;

};
deep_type X; 

// Performs shallow copy of X 
#pragma acc data copy(X) 



Deep Copy

Manual deep copy:
- attach/detach pointers, multi-level pointers

struct deep_type { 
int n; 
float* a;
float* b;
float* c;

};
deep_type X; 

// Performs copy of X, X.a, X.b, X.c and attach a, b, c to parent pointer X (top-down copy)
#pragma acc data copy(X) 
#pragma acc data copy(X.a[0:n],X.b[0:n],X.c[0:n]) 



Deep Copy
True deep copy:
• shape allows defining the size of global deep-copy behavior 
• policy enables defining selective direction behavior of deep-copy

struct deep_type { 
int n; 
float* a;
float* b;
float* c;

// This default shape includes deep copy of members a, b, and c, and 
// it ensures member n is always initialized
#pragma acc shape init_needed(n) include(a[0:n],b[0:n],c[0:n]) 

};
deep_type X; 
// Performs deep copy of X 
#pragma acc data copy(X) 



Deep Copy
True deep copy: shape syntax

struct deep_type { 
int n; 
float* a;
float* b;
float* c;

// This default shape includes deep copy of members a, b, and c, and 
// it ensures member n is always initialized
#pragma acc shape init_needed(n) include(a[0:n],b[0:n],c[0:n]) 

};
deep_type* Y; 
int size; 

// Performs a deep copy of Y; note that member n can be different for each element of Y
#pragma acc data copy(Y[0:size]) 



Deep Copy
True deep copy: two layers

template <Type T> 
class vector { 

T* base;
T* end;
#pragma acc shape include(base[0:size()], end[@base]) 

};

class Data {
vector <float> d1;
vector <float> d2;

}; 
Data d;

// This directive performs full deep-copy, since shape is default(include) and each member 
has a default shape 
#pragma data copy(d) 



Deep Copy

True deep copy: policy syntax

struct deep_type { 
int n; 
float* a;
float* b;
float* c;

#pragma acc shape init_needed(n) include(a[0:n],b[0:n],c[0:n]) 
// Policy to copyin members b and c and copyout member a (which might be used 
for a computation like a = b + c)
#pragma acc policy(calc_a) default(copyin) copyout(a) 

};
deep_type X; 

// Performs selective directional deep copy of X 
#pragma acc data invoke<calc_a>(X)



Deep Copy

• Syntax is still in discussion

• Details are at
– https://www.openacc.org/sites/default/files/inline-files/TR-14-1.pdf
– https://www.openacc.org/sites/default/files/inline-files/TR-16-1.pdf

• May make it to OpenACC 3.0, releasing in Nov 2019. 



Multiple Devices

• Currently, the OpenACC execution model is one device at a time
• To support multiple devices, we need to think about expanding the execution model

– today, OMP/MPI outer, then single device programming within OMP/MPI 
thread/rank

• One growth area is multiple-device fat workstations/nodes
– want to be able to control multiple GPUs all within OpenACC

• Two bits of low-hanging fruit when there’s only one host thread/rank
– copying directly between different devices
– synchronization across device queues



Multiple Devices
• Copying directly between different devices

– how to specify source and/or target device
– do we want to support broadcast to multiple devices 
– do we want to support host as a device

acc update device(a[0:n]) dstdev(1) srcdev(0) 
acc update device(a[0:n]) device_num(0,1) // destination, src
acc update device(a[0:n]) device_num(from:0,to:1) 
acc update device(a[0:n]) device_num(1) // no 'from' implies self 
acc update device(a[0:n]) device_num(from:1) // no 'to' implies current device 
acc update device(a[0:n]) device_num(0,:) // colon implies current device 
acc update device(from:a[0:n],to:b[0:n]) device_num(from:0,to:1) 
acc update (from:a[0:n],to:b[0:n]) device_num(from:0,toself) 
acc memcpy (from:a[0:n],to:b[0:n]) device_num(from:0,toself) 
acc set (from:a[0:n],to:b[0:n]) device_num(from:0,toself) 
acc update (from:a[0:n],to:b[0:n]) device_num(from:0,to:1)



Multiple Devices
• Synchronization across device queues

– the host waits for each device individually
– do we want to allow waiting on more than one device

acc wait(1,2) device_num(0,1) 
acc wait(0:1,1:2) 
acc wait(0:1) async(1:2) // device_num:queuenum
acc wait(dev=0:1,dev=1:2) async(dev=2:2) 
acc wait([device_num:1,queue:1], device_num:1,queue:2]) async([device_num:2,queue:2]) 
acc wait([d:1,q:1], d:1,q:2]) async([d:2,q:2])



Multiple Devices

• All of this is probably not a functionality issue but more of a syntax issue

• In the future,
– support ‘any’ integer levels of parallelism
– how to map parallelism to the fixed levels of parallelism on the device



Task Graphs

• Stephen Jones, Asynchronous Task Graphs in CUDA
• CUDA operations are submitted in streams, FIFO queues with dependences between operations
• Executional dependences and data dependences
• Easy to translate CUDA streams with dependences into a task DAG

• Graph nodes are kernels, data movement, CPU callbacks, subgraphs
• Define the CUDA graph, and launch (and relaunch) the graph very cheaply [instantiate + execute]

– graph sequence and configurations must be invariant

• A simple example with a sequence of short OpenACC parallel loops launched many times
– 10 iterations
– CUDA graph took .014us, and the regular version took .410us -- 30x improvement !



Optimization Directives

• An unroll directive for loops?

• An IWOMP paper proposed a plethora of loop transformations for OpenMP
– unroll
– tile
– interchange
– cache-tiling / strip-mining
– unroll-and-jam
– fusion
– distribute / fission
– vectorization / simd

– interleave
– software pipelining
– loop invariant code motoin
– if conversion
– collapsing



C++ Lambdas

• Compiler generates an anonymous struct with an operator() containing the lambda body, and a struct
member for each captured item, either by value or by reference (address)

• Problems
– unnamed struct does not get copied to the device as there is no named symbol for it
– operator() function has no 'acc routine' information
– how to attach pointer members 

• Solutions 
– for named lambdas, let user specify 'acc routine' above the lambda declaration
– for unnamed lambdas, let compiler inject 'acc routine seq’?
– deep copy lambda members

• copyin(lambda_struct), copyin(reference members), no_create/attach(pointer_members)



Reference

• All notes are available here
– https://github.com/OpenACC/openacc-spec/wiki/Notes

• Kyle Friedline (Udel)’s links for compiler comparisons
– OpenACC stuff:
– https://crpl.cis.udel.edu/blog/2018/07/15/openaccvv/
– https://www.researchgate.net/publication/318445660_OpenACC_25_Validation_Testsuite

_Targeting_Multiple_Architectures
– OpenMP stuff:
– https://crpl.cis.udel.edu/ompvvsollve/results/
– https://crpl.cis.udel.edu/ompvvsollve/Publications/_index.files/paper.P2S2_2018-

EvaluatingSupportForOpenMPOffloadingFeatures.pdf



Thank You



Goal/Vision

• Compared to OpenMP, OpenACC aims to build a ‘leaner’ set of directives
• targeting scalable parallelism not general parallelism
• no tasking, less synchronization primitives

• Descriptive vs. Prescriptive, and Performance Portability 
• lets compilers figure out how to move data/parallelize compute
• less directed by the programmer

• More mature for accelerators whereas OpenMP more for multi-cores
• can work together though, e.g. OpenACC inside OpenMP

• The method of parallelizing is the most valuable!



Structure of the Meeting
• Feedback from previous hackathons

– OLCF GPU Hackathons
– OpenACC Hackathons

• Issues from previous discussions or GitHub OpenACC/openacc-spec/Issues

• Prioritizing open issues

– Multiple devices
– Aliasing on data clauses, #14
– Task graphs
– Reductions, #148, #157
– C++ Lambdas
– requires directive

– Deep copy
– Optimization directives
– Cleaning up C/C++/Fortran pointers
– Error handler
– Memory Allocation



template<typename D>
class foo{ 

D* field; 
size_t n; 
foo(int nsize) { 

new field(nsize); 
n = nsize; 

} 
movetodevice() { 

#pragma acc enter data copyin(this) 
#pragma acc enter data copyin(field[0:n]) 

} 
movefromdevice() { 

#pragma acc exit data copyout(field[0:n]) 
#pragma acc exit data copyout(this) 

} 
};



struct deep_type { 
int n; 
float* a;
float* b;
float* c;

// This default shape includes deep copy of members a, b, and c, and 
// it ensures member n is always initialized; C pointers must be 
// shaped to get deep copy, since the default shape is a bitcopy of 
// the pointer value
#pragma acc shape init_needed(n) include(a[0:n],b[0:n],c[0:n]) 

};

deep_type X; 

// Performs deep copy of X 
#pragma acc data copy(X) 



Deep Copy

A motivating example:
template<typename D>
class foo{ 

D* field; 
size_t n; 
foo(int nsize) { 

new field(nsize); 
n = nsize; 

} 

movetodevice() { 
#pragma acc enter data copyin(this) 

} 
movefromdevice() { 

#pragma acc exit data copyout(field[0:n]) 

} 
};

foo<double> *x; 

... 
x->movetodevice(); 

If class yy has dynamic members, 
this will not be able to move those 
members without true deep copy 
directives.



Deep Copy

A motivating example:
template<typename D>
class foo{ 

D* field; 
size_t n; 
foo(int nsize) { 

new field(nsize); 
n = nsize; 

} 

movetodevice() { 
#pragma acc enter data copyin(this) 

} 
movefromdevice() { 

#pragma acc exit data copyout(this) 
} 

};

foo<double> *x; 
foo<class yy> *y; 
... 
x->movetodevice(); 
y->movetodevice(); 

If class yy has dynamic members, 
this will not be able to move those 
members without true deep copy 
directives.



Deep Copy

Manual deep copy:
template<typename D>
class foo{ 

D* field; 
size_t n; 
foo(int nsize) { 

new field(nsize); 
n = nsize; 

} 

movetodevice() { 
#pragma acc enter data copyin(this) 
#pragma acc enter data copyin(field[0:n]) 

} 
movefromdevice() { 

#pragma acc exit data copyout(field[0:n]) 
#pragma acc exit data copyout(this) 

} 
};

foo<double> *x; 
foo<class yy> *y; 
... 
x->movetodevice(); 
y->movetodevice(); 

This will move the dynamic members 
of yy, but requires manual work. Can 
get very tedious for large codes.



Deep Copy

True deep copy:
template<typename D>
class foo{ 

D* field; 
size_t n; 
foo(int nsize) { 

new field(nsize); 
n = nsize; 

} 
#pragma acc shape init_needed(n) include(field[0:n])
movetodevice() { 

#pragma acc enter data copyin(this) 

} 
movefromdevice() { 

#pragma acc exit data copyout(field[0:n]) 

} 
};

foo<double> *x; 
foo<class yy> *y; 
... 
x->movetodevice(); 
y->movetodevice(); 

This will move the dynamic 
members of yy, with much 
manual work. 



Deep Copy

• Copy semantics



• The simple shape syntax allows defining global deep-copy behavior for all objects of a 
particular type, but it is limited to full and selective-member deep-copy. The policy syntax 
enables defining global selective direction behavior for all objects of a particular type 



• Sync between threadblocks/threads
• Update dev_num
• Wait

• Aliasing in copyin/out

• Task graphs
• Small kernels - launch time 2-3 micro sec
• Code size not changing but device count is increasing
• 0.04s vs 0.4s

• Reductions — two reduction clauses



• Lambda
• Deep copy mechanism

• Deep copy
• ICON code climate fortran 4 levels of derived structured arrays
• CSCS
• Nov 2019, 3.0 Specs

• -Mx,203,n to control threadblock size for PGI compiler
• Memory allocation
• Kyle’s links; Pittsburgh tutorials
• Issue 106 vector private variable



Reductions

Fix spec text regarding reductions
#pragma acc parallel reduction(+:s) 

{ 

#pragma acc loop gang reduction(+:s) 

for(...){ 

s += 1; 

} // reduces gang-private copy of s to something here 

} // reduces gang-private copy of s to shared s here 


